Using Artificial Neural Networks in Predicting the Level of Stress among Military Conscripts
نویسندگان
چکیده
The present study aims to elucidate the main variables that increase level of stress at beginning military conscription service using an artificial neural network (ANN)-based prediction model. Random sample data were obtained from one battalion Lithuanian Armed Forces, and a survey was conducted generate for training testing ANN models. Using nonlinearity in research, numerous structures constructed verified limit optimal number neurons, hidden layers, transfer functions. highest accuracy by multilayer perceptron (MLPNN) with 6-2-2 partition. A standardized rescaling method used covariates. For activation function, hyperbolic tangent 20 units layer as well back-propagation algorithm. best model determined showed smallest cross-entropy error, correct classification rate, area under ROC curve. These findings show, high precision, cohesion team adaptation routines are two critical elements have greatest impact on conscripts.
منابع مشابه
Artificial neural networks: applications in predicting pancreatitis survival
Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...
متن کاملArtificial neural networks: applications in predicting pancreatitis survival
Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...
متن کاملEvaluation the efficiency of using Artificial Neural Networks in predicting meteorological droughts in north-west of Iran
Drought is one of the most destructive natural disasters in human societies that cause irreparable impacts on agriculture, environment, society and economics. So, awareness of occurrence of droughts can be effective in reducing losses. In this study, in order to modeling and forecasting drought severity in a 37 year time period (1971-2007) in 21 meteorological stations, located in the cold semi...
متن کاملPredicting students' performance using artificial neural networks
Artificial intelligence has enabled the development of more sophisticated and more efficient student models which represent and detect a broader range of student behavior than was previously possible. In this work, we describe the implementation of a user-friendly software tool for predicting the students' performance in the course of “Mathematics” which is based on a neural network classifier....
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2021
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math9060626